The Hamiltonian Problems on Supergrid Graphs
نویسندگان
چکیده
In this paper, we first introduce a novel class of graphs, namely supergrid. Supergrid graphs include grid graphs and triangular grid graphs as their subgraphs. The Hamiltonian cycle and path problems for grid graphs and triangular grid graphs were known to be NP-complete. However, they are unknown for supergrid graphs. The Hamiltonian cycle (path) problem on supergrid graphs can be applied to control the stitching trace of computerized sewing machines. In this paper, we will prove that the Hamiltonian cycle problem on supergrid graphs is NPcomplete. It is easily derived from the Hamiltonian cycle result that the Hamiltonian path problem on supergrid graphs is also NP-complete. We then show that two subclasses of supergrid graphs, including rectangular (parallelism) and alphabet, always contain Hamiltonian cycles. Keywords-Hamiltonian problems; supergrid graph; rectangular and alphabet supergrid graphs; grid graph; triangular grid graph; computerized sewing machine
منابع مشابه
The Hamiltonian properties of supergrid graphs
In this paper, we first introduce a novel class of graphs, namely supergrid. Supergrid graphs include grid graphs and triangular grid graphs as their subgraphs. The Hamiltonian cycle and path problems for grid graphs and triangular grid graphs were known to be NP-complete. However, they are unknown for supergrid graphs. The Hamiltonian cycle (path) problem on supergrid graphs can be applied to ...
متن کاملThe Hamiltonian Connected Property of Some Shaped Supergrid Graphs
A Hamiltonian path (cycle) of a graph is a simple path (cycle) which visits each vertex of the graph exactly once. The Hamiltonian path (cycle) problem is to determine whether a graph contains a Hamiltonian path (cycle). A graph is called Hamiltonian connected if there exists a Hamiltonian path between any two distinct vertices. Supergrid graphs were first introduced by us and include grid grap...
متن کاملHamiltonian Cycles in Linear-Convex Supergrid Graphs
A supergrid graph is a finite induced subgraph of the infinite graph associated with the two-dimensional supergrid. The supergrid graphs contain grid graphs and triangular grid graphs as subgraphs. The Hamiltonian cycle problem for grid and triangular grid graphs was known to be NP-complete. In the past, we have shown that the Hamiltonian cycle problem for supergrid graphs is also NP-complete. ...
متن کاملThe Hamiltonian connectivity of rectangular supergrid graphs
A Hamiltonian path of a graph is a simple path which visits each vertex of the graph exactly once. The Hamiltonian path problem is to determine whether a graph contains a Hamiltonian path. A graph is called Hamiltonian connected if there exists a Hamiltonian path between any two distinct vertices. In this paper, we will study the Hamiltonian connectivity of rectangular supergrid graphs. Supergr...
متن کاملGeometric-Arithmetic Index of Hamiltonian Fullerenes
A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. In this paper we compute the first and the second geometric – arithmetic indices of Hamiltonian graphs. Then we apply our results to obtain some bounds for fullerene.
متن کامل